Warning: Invalid argument supplied for foreach() in /home/curtisbooherbook/public_html/wp-content/themes/everest64/search.php on line 61
Language: en
Pages: 117
Pages: 117
This is the most current textbook in teaching the basic concepts of abstract algebra. The author finds that there are many students who just memorise a theorem without having the ability to apply it to a given problem. Therefore, this is a hands-on manual, where many typical algebraic problems are
Language: en
Pages: 277
Pages: 277
This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students
Language: en
Pages: 412
Pages: 412
Computational Problems in Abstract Algebra provides information pertinent to the application of computers to abstract algebra. This book discusses combinatorial problems dealing with things like generation of permutations, projective planes, orthogonal latin squares, graphs, difference sets, block designs, and Hadamard matrices. Comprised of 35 chapters, this book begins with an
Language: en
Pages: 101
Pages: 101
Books about Solutions to Problems in Introduction to Abstract Algebra
Language: en
Pages: 491
Pages: 491
Suitable for second to fourth year undergraduates, this title contains several applications: Polya-Burnside Enumeration, Mutually Orthogonal Latin Squares, Error-Correcting Codes and a classification of the finite groups of isometries of the plane and the finite rotation groups in Euclidean 3-space.
Language: en
Pages: 402
Pages: 402
Computational Problems in Abstract Algebra provides information pertinent to the application of computers to abstract algebra. This book discusses combinatorial problems dealing with things like generation of permutations, projective planes, orthogonal latin squares, graphs, difference sets, block designs, and Hadamard matrices.
Language: en
Pages: 234
Pages: 234
Realizing the specific needs of first-year graduate students, this reference allows readers to grasp and master fundamental concepts in abstract algebra-establishing a clear understanding of basic linear algebra and number, group, and commutative ring theory and progressing to sophisticated discussions on Galois and Sylow theory, the structure of abelian groups,
Language: en
Pages: 263
Pages: 263
Language: en
Pages: 869
Pages: 869
Designed for undergraduate and postgraduate students of mathematics, the book can also be used by those preparing for various competitive examinations. The text starts with a brief introduction to results from Set theory and Number theory. It then goes on to cover Groups, Rings, Fields and Linear Algebra. The topics
Language: en
Pages: 168
Pages: 168
This book does nothing less than provide an account of the intellectual lineage of abstract algebra. The development of abstract algebra was propelled by the need for new tools to address certain classical problems that appeared insoluble by classical means. A major theme of the book is to show how